A Phase I/II Study of Scelidematstat, an LSD1 Inhibitor, and Azacitidine for Patients with Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia

Guillermo Montalban-Bravo1, Courtney DiNardo1, Nicholas Short1, Yesid Alvarado1, Tapan Kadia1, Farhad Ravandi1, Meghan Meyer1, Jane Waukau1, Sherry Pierce1, Hagop Kantarjian1, Guillermo Garcia-Manero1

Departments of Leukemia,1 The University of Texas M.D. Anderson Cancer Center

Background
- Epigenetic modifications are essential for gene expression regulation
- Aberrant DNA and histone methylation is a hallmark of MDS and CMML pathogenesis and progression
- Hypomethylating agents active via epigenetic modifications and induction of differentiation
- Poor outcomes after HMA failure – OS of 4-6 months
- Lysine specific demethylase 1 (LSD1) implicated in maintenance of pluripotency and proliferation genes
- LSD1 inhibition promotes differentiation of blast cells and has antileukemic effect
- Evaluation of synergetic effect of LSD1 inhibition with azacitidine

Objectives
- Evaluate the safety and efficacy of scelidematstat in combination with azacitidine in patients (pts) with higher-risk MDS and CMML
- Evaluate the efficacy of MDS and CMML with failure to HMA therapy

Methods
Inclusion Criteria
- Age ≥18 years of age
- Diagnosis of MDS or CMML by WHO
- Int-1 to high risk by IPSS
- No response after 6 cycles of HMA or relapse or progression after any number of cycles
- ECOG PS ≤2
- CrCr >500mL/min
- AST/ALT ≤3xULN, BRs ≤2xULN

Study Design
- Phase III study of scelidematstat in combination with azacitidine
- Initial Phase 1 dose escalation evaluating up to 6 dose levels of scelidematstat (Figure 1)
- Phase II dose expansion at selected dose level of scelidematstat
- Cycles every 28 days
- Maximum cohort of N=35 pts

Stopping rules for toxicity and response

Study Endpoints
- Primary objective: safety, tolerability, MTD and overall response
- Secondary objective:
 - Overall survival, duration of response, leukemia-free survival
 - Correlative studies during dose expansion phase

Results

Patient Characteristics
- Nine patients enrolled as of October 2022.
- Patient characteristics detailed in Table 1

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Diagnosis</th>
<th>NMD (NMD%)</th>
<th>ANC (ANC%)</th>
<th>High (High%)</th>
<th>PR (PR%)</th>
<th>CR (CR%)</th>
<th>BM Blasts (%)</th>
<th>Keytype</th>
<th>Mutations</th>
<th>Risk Category</th>
<th>Prior Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74</td>
<td>T-MDS</td>
<td>2.9</td>
<td>1.5</td>
<td>12.6</td>
<td>68</td>
<td>10</td>
<td>Normal</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>T-MDS</td>
<td>19.8</td>
<td>13.13</td>
<td>7.6</td>
<td>35</td>
<td>10</td>
<td>MDS, T-RA/RB</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>T-MDS</td>
<td>6.6</td>
<td>0.50</td>
<td>11.5</td>
<td>119</td>
<td>10</td>
<td>MDS, T-RA/RB</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>CMML</td>
<td>5.6</td>
<td>1.18</td>
<td>9.2</td>
<td>58</td>
<td>6</td>
<td>MDS, T-RA/RB</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>5</td>
<td>78</td>
<td>MDS</td>
<td>5</td>
<td>3.3</td>
<td>8.4</td>
<td>95</td>
<td>3</td>
<td>Normal</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
<td>MDS</td>
<td>1.7</td>
<td>1.11</td>
<td>7.2</td>
<td>32</td>
<td>10</td>
<td>Normal</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>CMML</td>
<td>31.3</td>
<td>13.46</td>
<td>8.4</td>
<td>60</td>
<td>0</td>
<td>MDS, T-RA/RB</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>CMML</td>
<td>1.8</td>
<td>0.27</td>
<td>13.7</td>
<td>78</td>
<td>15</td>
<td>MDS, T-RA/RB</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
<tr>
<td>9</td>
<td>68</td>
<td>MDS</td>
<td>17.1</td>
<td>19.43</td>
<td>8.6</td>
<td>362</td>
<td>1</td>
<td>Normal</td>
<td>Complex</td>
<td>TP53</td>
<td>Int-1 to High</td>
<td>Decitaxel</td>
</tr>
</tbody>
</table>

Toxicities
- Early mortality of 0%
- No DLTs at current dose level.
- Adverse events detailed in Table 2.
- 6 (67%) patients experienced reversible elevation of Cr → initial week of therapy with azacitidine
- Cardiac rhythm/ECG abnormalities in 3 patients

Conclusions
- Combination of azacitidine and scelidematstat safe at current dose levels
- Early signs of activity in high-risk MHA failure population:
 - ORR 50%
 - 1 CR, 2 mCR+HI, 1 mCR
- Evaluation of biomarkers of response planned in dose expansion
- Need for further experience to determine safety and efficacy of higher doses of scelidematstat

Contact Details
Guillermo Montalban-Braavo, M.D.
Department of Leukemia
University of Texas, M.D. Anderson Cancer Center
1515 Holcombe Blvd
Houston, TX 77015
E-mail: gmontalban1@mdamderson.org

Disclosures
No conflict of interest to disclose.